

Transfer Learning for Natural Language Generation — The Case of Open-Domain Dialog

A quick introduction to Natural Language Processing

Natural Language Processing

Natural Language Processing (NLP): how to program computers to *process* and analyze (large amounts of) *natural language* data.

NLP is an **engineering field** (like « building-planes ») standing on the shoulders of several **science** fields (like « fluid mechanics »):

Natural Language Processing

Tasks in NLP that can be generally grouped as:

- Natural Language Understanding (NLU) (text is an *input*)
 - Information extraction (ex. from scientific publications)
 - Basis for down-stream systems that uses text as input
 - ...
- Natural Language Generation (NLG) (text is an output)
 - Used to communicate with human beings
 - Store human-readable information
 - ...

Natural Language Generation

Today we'll talk about Natural Language Generation (NLG):

Computer programs which generate human-readable text as their output.

Many theoretical reasons to study NLG

- General interest:
 - Hints to understand human language & cognition:
 - « [NLG is] the process by which thought is rendered into language » (McDonald)
 - Cognitive research on language production (Kukich '87, Elman '90, Chang, '06)
 - Linguistic research on the emergence/acquisition of language
 - Human knowledge is stored in natural language form in books/encyclopedia.
- In the field of Artificial Intelligence:
 - Debugging and understanding our AI systems:
 - Strong incentive to make « black-box » AI models more interpretable
 - Humans explain a decision by using natural language
 - Enabling unsupervised learning (the problem of data availability/cost in NLP):
 - Modern NLP/AI systems require huge datasets that are expensive to annotate
 - Can we learn general concepts by learning to generate language?
 - This is called Transfer Learning

Ecosystem of Natural Language Generation

Anatomy of a Natural Language Generation System

Anatomy of an NLG system

Open-Domain Conversational Agents

Main approaches to Open-Domain Dialog

Two main classes of models:

- **Retrieval** models: ⊕ Grammaticality/Fluency ⊖:
 - 1.Adaptability,
 - 2.Diversity,
 - 3.Consistency
- **Generative** models: ⊕ Diversity/Adaptability ⊖:
 - 1. Lack of a consistent personality
 - 2. Lack long-term memory (trained to use only recent history)
 - 3. Tend to produce non-specific answers: "I don't know"

The Conversational Intelligence Challenge 2 (ConvAl2)

NeurIPS 2018 - Competition Track

Condition Dialog on a Predefined Personality

Example of training dataset – Evaluation dataset: PERSONA-CHAT (Zhang et al. 2018)

Persona 1	Persona 2
I like to ski	I am an artist
My wife does not like me anymore	I have four children
I have went to Mexico 4 times this year	I recently got a cat
I hate Mexican food	I enjoy walking for exercise
I like to eat cheetos	I love watching Game of Thrones

[PERSON 1:] Hi

[PERSON 2:] Hello ! How are you today ?
[PERSON 1:] I am good thank you , how are you.
[PERSON 2:] Great, thanks ! My children and I were just about to watch Game of Thrones.
[PERSON 1:] Nice ! How old are your children?
[PERSON 2:] I have four that range in age from 10 to 21. You?
[PERSON 1:] I do not have children at the moment.
[PERSON 2:] That just means you get to keep all the popcorn for yourself.
[PERSON 1:] And Cheetos at the moment!
[PERSON 2:] Good choice. Do you watch Game of Thrones?
[PERSON 1:] No, I do not have much time for TV.
[PERSON 2:] I usually spend my time painting: but, I love the show.

Example dialog from the PERSONA-CHAT dataset. Person 1 is given their own persona (top left) at the beginning of the chat, but does not know the persona of Person 2, and vice-versa. They have to get to know each other during the conversation.

- Amazon Mechanical Turkers were:
 - paired by two,
 - each given a personality comprising 4-5 simple sentences, and
 - asked to **talk** together in order to get to know each other.
- Resulted in a dataset of
 - 10,981 dialogs comprising
 - 164,356 utterances and about 1-2M words
 - Average number of turns: 14

Metrics

Automatic Metrics

- **PPL** (perplexity) How well the model can predict the successive words in a gold message (written by humans).
 - lower is better Scale: Infinity 0
- Hits@1 Number of time the model select the gold next message between 20 possible message (the other 19 are random)
 - higher is better Scale: 0 –100
- F1 How many content words (nouns/verbs) does a message generated by your model share with a gold message.
 - higher is better Scale: 0 –100

Human Evaluation

- 100 evaluations per model
- Turkers & model each assigned a persona and chat for 4-6 dialog turns each
- After the chat, the worker is asked:
 - How much did you enjoy talking to this user?
 - Which character do you think the other user was given for this conversation?

Final Leaderboards of the Competition

Automatic Metrics

Rank	Creator	PPL	Hits@1	F1
1 🦢	🚊 (Hugging Face)	16.28🍎	80.7 🍎	19.5🍎
2 🦢	ADAPT Centre	31.4	-	18.39
з 🤪	⊢appy Minicns	29.01		16.01
4 🦢	⊢igh Five	-	65.9	-
5 🍗	Mohd Shadab Alam	29.94	13.8	16.91
6 🍆	Lost in Conversation	-	17.1	17.77
7 🦫	Little Baby(AI小奶娃)	-	64.8	-
8	Sweet Fish	-	45.7	-
9	1st-contact	31.98	13.2	16.42
10	NEUROBOTICS	35.47	-	16.68
11	Cats'team	-	35.9	-
12	Sonic	33.46	-	16.67
13	Pinta	32.49	-	16.39
14	Khai Mai Alt	-	34.6	13.03
15	loopAl	-	25.6	-
16	Salty Fish	34.32	-	-
17	Team Pat	-	-	16.11
13	Tensorborne	38.24	12.0	15.94
19	Team Dialog 6	40.35	10.9	7.27
20	Roboy	-	-	15.83
21	lamNotAdele	66.47	-	13.09

Human Evaluation

Diving in the Wining Approaches \land

Two Approaches to Open-Domain Dialog

Similarities and Differences

• Many common points:

- Both build on top of Generative Transformer models
- Both based on Transfer Learning Approaches
- Same Pre-training Phase

But also some differences:

- Different Architectural Modifications for the Adaptation
- Different Objectives for the Adaptation Phase
- Different Decoders

Common Points: A Generative Transformer

A Transformer Generative Model

Our Dialog System has two elements:

- A generative model which generate the words one by one given the context,
- A **decoder** which controls the generative model.

In both approaches, the **generative model** is based on the OpenAI GPT¹:

- BPE vocabulary with 40000 tokens
- learned position embeddings with 512 positions
- 12 layers
- 12 attention head with 768 dimensional states
- position-wise feed-forward networks with 3072

dimensional inner states

1.Radford, A., Narasimhan, K., Salimans, T., Sutskever, I. (2018). Improving language understanding by generative pre-training.

Transformer Model

[Slides by Emma Strubbell – EMNLP 2018]

Language Modeling Transformer

Common Points: Transfer Learning

Limitations of the dataset

- PERSONA-CHAT is **one of the biggest** multi-turn dialog dataset :
 - 164,356 utterances and about 1-2M words
 - Average number of turns: 14
- But it is still **small** for training a deep learning model:
 - 1B words in the Billion Words dataset
 - ~1M sentences in CoNLL 2012 (used for training co-reference systems)
- And generating an engaging open-domain dialogue requires:
 - topic-coherence,
 - dialogue-flow,
 - common-sense,
 - short term memory,
 - co-reference resolution,
 - sentimental analysis,
 - textual entailment...

Validation set (public) Leaderboard – <u>Test set (hidden) Leaderboard</u>

Model	Creator	PPL	Hits@1	F1
	🚊 (Hugging Face)	23.05🍎	74.3🍎	17.85🍎
	Team Pat	-	-	17.85
	Pinta	-	51.4	17.25
	Mohd Shadab Alam	35.57	14.8	16.94
	Sonic	38.87	-	16.88
	NEUROBOTICS	39.7	-	16.82
	Happy Minions	34.57	68.1	16.72
_	1st-contact	36.54	13.3	16.58
	Tensorborne	44.64	12.1	16.13
	flooders	-	-	15.96
	Lost in Conversation	62.83	-	15.91
	High Five	59.83	78.2	15.34
	Little Baby	-	72.9	-
	loopAl	-	29.7	-
	Salty Fish	42.3	-	-

• Small dataset =>

Large models are overfitting
Small models are underfitting

Model	Creator	PPL	Hits@1	F1
	🧝 (Hugging Face)	20.47 🍎	74.7 🍎	17.52🍎
	Little Baby	-	61.0	-
	Happy Minions	32.94	52.1	14.76
	High Five	52.8	50.3	13.73
	Pinta	-	44.4	16.52
	loopAl	-	25.6	-
	Mohd Shadab Alam	30.97	14.4	16.44
	1st-contact	31.98	13.2	16.42
	Tensorborne	38.24	12.0	15.94
	Team Dialog 6	40.35	10.9	7.27
	NEUROBOTICS	35.47	-	16.68
	Sonic	33.46	-	16.67
	Lost in Conversation	55.84	-	15.74
	flooders	-	-	15.47
	Team Pat	-	-	13.23
	Salty Fish	45.87	-	-
Seq2Seq + Attention	ParlAl team	29.8	12.6	16.18
Language Model	ParlAI team	46.0	-	15.02
KV Profile Memory	ParIAI team	-	55.2	11.9

Transfer Learning

A two-stage procedure

1. *Pre-train* the model on a **large** dataset:

- which is **not** the dataset you will use in the end,
- but on which you hope to learn general concepts that will help in your case
- 2. *Adapt* the model on your **small** dataset:
 - to make it perform well on your task.

Pre-training

1. The model is pre-trained on

- a large dataset of contiguous span of texts (Toronto Book Corpus: ~7000 books)
- with a Language Modeling objective (as we've just seen).
- Learns initial parameters of the neural network model.
- Provide the model with
 - some kind of world knowledge and
 - an ability to **build coherent sentences** by processing long-range dependencies.
- In our experiments, we started from the pre-trained model of Radford et al. 2018.

A Simple Method for Commonsense Reasoning by Trinh & Le (2018), Improving, Language Understanding by Generative Pre-Training by Radford et al. (2018), Universal Language Model Fine-tuning for Text Classification by Howard and Ruder (2018), BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding by Jacob Devlin et al (2018)

Adaptation phase: Training dataset

Dataset for Fine-Tuning

Only used a sub-set of the full PERSONA-CHAT dataset: - The training dataset with « original personalities »

Zhang S. et al. Personalizing Dialogue Agents: I have a dog, do you have pets too?

Uses a combination of 2 dialog datasets:

- PERSONA-CHAT with original and revised personalities Zhang S. et al. Personalizing Dialogue Agents: I have a dog, do you have pets too?
- DialyDialog dataset

Li Y. et al. DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset

Adaptation phase: Adapting the Architecture

Adapting a Language Model for Dialog

Several inputs with different types

Knowledge Base

Persona 2

History Dialog

Personality I am an artist I have four children I recently got a cat I enjoy walking for exercise I love watching Game of Thrones

> [PERSON 1:] Hi [PERSON 2:] Hello ! How are you today ?

Next generated utterance

[PERSON 2:] Great, thanks ! My children and I were just about to watch Game of Thrones.

Huggingface Approach – Additional Encodings

- After pre-training we have a model with basic common-sense and coreference capabilities, now we need to teach it the specificities of dialog:
 - Alternating utterances
 - Dialog flow (« speech/dialog acts »)
 - Conditioning on a personality
- How to build a sequential inputs for our model from a conditioned dialog?
 - Transformers don't possess a natural notion of sequentiality and position
 - We already have positional embeddings to incorporate sequentiality
 - We add special embeddings related to utterances and personas

Ι	like	to	ski	Hello	!	How	are	you	today	?	I	am	good	thank	you

Word embeddings Dialog state embeddings Positional embeddings

Huggingface Approach – Additional Encodings

We can play with these embeddings to manipulate the notion of a sequence

Repeating specific embeddings to control positioning information

I	like	to	ski	I	hate	mexican	food	I	like	to	eat	cheetos

• We can also augment the dataset to bias towards positional invariance

I	hate	m	mexican		food	I	like	to	eat	c	cheetos		like	to	ski
							_								
I	like	to	ski	Т	hate	r	mexican		food	Т	like	to	eat	che	etos

Permutation augmented dataset to bias towards positional invariance

NEUROMATION Lost In Conversation Approach – Dual-Model

UROMATION

Shared encoder and decoder:

- Shared pre-softmax linear layer and token embeddings
- Reduction of persona information and dialog history first and last 512 tokens respectively

NEUROMATION Lost In Conversation Approach – Dual-Model

Attention layer modifications:

- Shared multi-head attention layers
- Parallel computation of attention for inputs
- Merge of attentions mean

Adaptation phase: Training Objective

NEUROMATION Lost In Conversation – Token and Sequence Losses

To train model we used weighted combination of losses¹:

•
$$\lambda_{LM} = 0.5$$

$$\begin{split} Loss &= L_{TokLS} + \lambda_{LM} \cdot L_{LM} + \lambda_{risk} \cdot L_{risk} \\ L_{TokLS} &= -\sum_{i} \log P(y_i | y_1, \dots, y_{i-1}) - D_{KL}(f | | P(y_i | y_1, \dots, y_{i-1})) \\ L_{LM} &= -\sum_{i} \log P(y_i | y_1, \dots, y_{i-1}) \\ L_{risk} &= \sum_{y_{pred} \in B} (1 - f1(y_{target}, y_{pred})) \cdot \frac{p(y_{pred})}{\sum_{y'_{pred} \in B} p(y'_{pred})} \\ \bullet \lambda_{risk} = 10 \\ \bullet \lambda_{ri$$

for risk minimization

1. Edunov S. et al. Classical Structured Prediction Losses for Sequence to Sequence Learning

Decoding – Beam Search 🔊

Dataset for Fine-Tuning

Beam Search with

- length penalty
- basic n-gram filtering (rule of the completion)

Beam-search with:

- length penalty
- annealing
- diversity groups

A very subjective wrap-up

(Probably) Good Ideas

- Huggingface:
 - Adding additional dialog embeddings
 - Next sentence prediction loss (effect on LM?)
- Lost in Conversation:
 - Bigger adaptation dataset
 - Sequence level and risk losses (is F1 the right metric?)

More Questionable Choices

- Huggingface:
 - Over fitting to the adaptation dataset
 - Strong exposure bias problem
- Lost in Conversation:
 - Dual-model learning
 - Sharing positional embeddings

Human Evaluations Automatic Metrics

Human Evaluation on Huggingface's model

Hello there, I like rock climbing do you have any hobbies?

i like nature. do you? i like nature.

I do love nature, especially when going on walks

what is your favorite rock? mine is rock.

Well I like rock music, does that count?

i think it does. what do you do for fun?

Well I work at a restaurant that I love, and rock climbing

that sounds fun! i'm into nature.

Cool, so am I

do you have any pets? do you have pets?

User feedbacks

[Adapted from slides by Emily Dinan / Jason Weston - NeurIPS 2018]

BOT IN BLUE

Too much questions

Questions: who, what, when, where, why, how

Question Marks

[Adapted from slides by Emily Dinan / Jason Weston – NeurIPS 2018]

Evaluation in Natural Language Generation

An Open Research Question

- Automatic metrics don't correlate well with human evaluations
- Together with Microsoft, University of Washington, Stanford and Facebook, we are organizing a workshop on this topic this summer in Minneapolis:

NeuralGen 2019:

Methods for Optimizing and Evaluating Neural Language Generation

NeuralGen will be co-located with NAACL 2019 Minneapolis, USA – June 6-7, 2019

That's it for today Thanks for listening!

thomas@huggingface.co