Neural-Network-based Dialog Agents: Going Beyond the Seq2seq Model

Thomas WOLF thomas@huggingface.co

We raised \$5.2M in early 2018

From institutional investors

And private investors

HuggingFace is building a SOCIAL AI It holds long conversations, it's fun and cares about you It helps you build your **confidence**, get **better** and be **more social Hilarious chats** Chat about your day with your own artificial intelligence ···· Sorin: 9:24 AM 1 i 🔳 Maeve 120 💿 9:19 AM Sprint Maeve 😂 100 👩 What did you do today? What should we talk about now? We can chat about guys! Haha Haha yes I went to the beach! -lahahahaha, 🖕 Do you have a boyfriend?

You should get a boyfriend

Topic of Today: Chit-Chat 🕹

The Con	versation	al Intellige	ence (Chall	enge	2 (ConvAI2)							
	View On GitHub												
	Current Leaderboard												
ConvAI2: Overview of the competition	Model	Creator	PPL	Hits@1	F1								
Prize		🚊 (Hugging Face)	20.47 🍎	74.7 🍎	17.52🍎								
News		High Five	-	65.9	-								
Current Leaderboard		Little Baby	-	63.4	-								
PersonaChat ConvAl2 Dataset		Happy Minions	32.94	52.1	14.76								
Evaluation		Catsiteam	-	35.9									
Metrics		Loss Al		25.6									
Protocol		юрн		20.0									
Rules		Mohd Shadab Alam	29.94	13.8	16.91								
Model Submission		1st-contact	31.98	13.2	16.42								
Schedule		Tensorborne	38.24	12.0	15.94								
FAQ		Team Dialog 6	40.35	10.9	7.27								
DeepHack.Chat													

Open domain - open form: no limitation on topic, raw text input, no constrains Short conversation: <10 turns Small talk: shallow topics, not about question-answering, light memorization

Two Paradigms in Chit-Chat

• Retrieval-based model:

- Take a dataset of dialogs as big as you can.
- Compute a **similarity** between the current dialog and your dataset.
- Send back the **closest** answer.
- Generative model:
 - A recent alternative mostly popularized by 2015's « A Neural Conversational Model » by Vinyals and Le
 - Generate word after word up until the utterance is deemed complete.
 - Typical architecture: an LSTM digests the inputs word by words and another LSTM generates the output from the last hidden state: « Seq2seq Model »

Conversation 4: Philosophical Q&A

Human: what is the purpose of life ? Machine: to serve the greater good . Human: what is the purpose of living ? Machine: to live forever . Human: what is the purpose of existence ? Machine: to find out what happens when we get to the planet earth . Human: where are you now ? Machine: i 'm in the middle of nowhere . Human: what is the purpose of dying ? Machine: to have a life .

Strengths & Limitations

- Retrieval models:
 - Good grammaticality (replies are written by humans)
 - But: can't adapt the response to the context
 - Problem of consistency: contradictory answers are often close to the same question
- Generative models:
 - Can dynamically adapt to the context
 - But: tend to default to unappealing answers like « yes/no/l don't know »
 - Grammatically is often an issue
- Rule of NIPS Conversational Intelligence Challenge 2 (ConvAl2)
 - Condition the models on personalities to improve consistency

The Conversational Intelligence Challenge 2 (NIPS 2018 competition)

Persona 1	Persona 2
I like to ski	I am an artist
My wife does not like me anymore	I have four children
I have went to Mexico 4 times this year	I recently got a cat
I hate Mexican food	I enjoy walking for exercise
I like to eat cheetos	I love watching Game of Thrones

[PERSON 1:] Hi
[PERSON 2:] Hello ! How are you today ?
[PERSON 2:] Hello ! How are you, how are you.
[PERSON 2:] Great, thanks ! My children and I were just about to watch Game of Thrones.
[PERSON 1:] Nice ! How old are your children?
[PERSON 2:] I have four that range in age from 10 to 21. You?
[PERSON 1:] I do not have children at the moment.
[PERSON 2:] That just means you get to keep all the popcorn for yourself.
[PERSON 1:] And Cheetos at the moment!
[PERSON 2:] Good choice. Do you watch Game of Thrones?
[PERSON 1:] No, I do not have much time for TV.
[PERSON 2:] I usually spend my time painting: but, I love the show.

Example dialog from the PERSONA-CHAT dataset. Person 1 is given their own persona (top left) at the beginning of the chat, but does not know the persona of Person 2, and vice-versa. They have to get to know each other during the conversation.

Chit-chat with a human while keeping a coherent/predefined persona

Automatic Metrics

- **PPL** (perplexity) *How well the model can predict the successive words in a gold message (written by humans).*
 - lower is better
 - Scale: Infinity 0
- **Hits@1** Number of time the model select the gold next message between 20 possible message (the other 19 are random)
 - higher is better.
 - Scale: 0 –100
- **F1** How many content words (nouns/verbs) does a message generated by your model share with a gold message.
 - higher is better.
 - Scale: 0 –100

These automatic metrics have issues – The best is always the human opinion

First submission results

(The 2nd is on its way with a +8 points improvement in Hits@1)

Model	Creator	PPL	Hits@1	F1
	😑 (Hugging Face)	20.47 🍎	74.7 🍎	17.52🍎
	High Five	-	65.9	-
	Little Baby	-	63.4	-
	Happy Minions	32.94	52.1	14.76
	Catsiteam	-	35.9	-
	loopAl	-	25.6	-
	Mohd Shadab Alam	29.94	13.8	16.91
	1st-contact	31.98	13.2	16.42
	Tensorborne	38.24	12.0	15.94
	Team Dialog 6	40.35	10.9	7.27
	NEUROBOTICS	35.47	-	16.68
	Sonic	33.46	-	16.67
topicSeq2seq	Team Pat	-	-	16.11
	Roboy	-	-	15.83
	Lost in Conversation	55.84	-	15.74
	flooders	-	-	15.47
	lamNotAdela	66.47	-	13.09
	Salty Fish	38.86	-	-
	Pinta	37.85	-	-
Seq2Seq + Attention	ParIAI team	29.8	12.6	16.18
Language Model	ParIAI team	46.0	-	15.02
KV Profile Memory	ParIAI team	-	55.2	11.9

Demo Time? 🚊

Figure 1: A diagram of the Profile Memory Network for generation. We also implemented a ranking version which has the same architecture except it ranks candidate sentences from the training set instead of generating, representing them using bag-of-word embeddings.

Baseline: Memory-augmented **seq2seq**

Our model: TransferTransfo

What's the difference? 🕱

Validation set (public) Leaderboard – <u>Test set (hidden) Leaderboard</u>

Model	Creator	PPL	Hits@1	F1
_	😑 (Hugging Face)	23.05🍎	74.3🍎	17.85🍎
	Team Pat	-	-	17.85
-	Pinta	-	51.4	17.25
	Mohd Shadab Alam	35.57	14.8	16.94
	Sonic	38.87	-	16.88
	NEUROBOTICS	39.7	-	16.82
	Happy Minions	34.57	68.1	16.72
	1st-contact	36.54	13.3	16.58
	Tensorborne	44.64	12.1	16.13
	flooders	-	-	15.96
	Lost in Conversation	62.83	-	15.91
	High Five	59.83	78.2	15.34
	Little Baby	-	72.9	-
	loopAl	-	29.7	-
	Salty Fish	42.3	-	-

Small dataset =>

- Large models are overfitting
- Small models are underfitting

Model	Creator	PPL	Hits@1	F1
	🧕 (Hugging Face)	20.47🍎	74.7 🍎	17.52🍎
	Little Baby	-	61.0	-
	Happy Minions	32.94	52.1	14.76
	High Five	52.8	50.3	13.73
	Pinta	-	44.4	16.52
	ΙοορΑΙ	-	25.6	-
	Mohd Shadab Alam	30.97	14.4	16.44
	1st-contact	31.98	13.2	16.42
	Tensorborne	38.24	12.0	15.94
\ ·	Team Dialog 6	40.35	10.9	7.27
	NEUROBOTICS	35.47	-	16.68
	Sonic	33.46	-	16.67
	Lost in Conversation	55.84	-	15.74
	flooders	-	-	15.47
	Team Pat	-	-	13.23
	Salty Fish	45.87	-	-
Seq2Seq + Attention	ParlAI team	29.8	12.6	16.18
Language Model	ParlAI team	46.0	-	15.02
KV Profile Memory	ParIAI team	-	55.2	11.9

Transfer Learning

TransferTransfo is a Transformer Model...

- Take a fixed-length sequence of « words » as input and outputs a sequence of the same length
- Each output is a probability distribution over the next words
 => a probability for each word in the vocabulary
- Inside:
 - Self-attention: MLP compute Key-Value-Query for each element of the sequence
 - Causal masking in the attention heads to only attend to the past.

Text

Prediction

Task

Classifier

... Trained using Transfer Learning & Multi-Task Learning

- The competition dataset (PERSONA-CHAT) is one of the biggest multi-turn dialog dataset (10k conversations, about 100k turns) but it is still quite small in term of requirement for deep learning tools:
 - ex: Billion Words dataset has 1B words, CoNLL 2012 used for training coreference systems is ~1M sentences long.
- An engaging open-domain dialogue is a lot more than just topic-coherence and dialogue-flow!
 - Need have common-sense, short term memory, co-reference resolution, sentimental analysis, textual entailment,...
 - Hard to learn all these from such a small dataset.
- Solution:
 - Use transfert learning and multi-task learning

Transfer Learning 🦄

- Train the model on the language modeling task on a large dataset.
 - Language modeling: given a seq of words, learn to predict the next word
 - This task force the model to learn many aspects of language including high-level ones like common-sense knowledge.
 - Recently shown to improve many downstream NLP tasks and in particular commonsense reasoning / co-reference resolution:
 - A Simple Method for Commonsense Reasoning by Trinh & Le (2018)
 - *Improving Language Understanding by Generative Pre-Training* by Radford et al. (2018)
 - Universal Language Model Fine-tuning for Text Classification by Howard and Ruder (2018)
 - Our model is derived from the model of Radford et al. pre-trained on the Toronto Book dataset (7k books).

Encoding a Dialog

Learning Dialog Flow and Persona

- Now that we have a model with basic common-sense and co-reference capabilities, we need to teach it the specificities of dialog:
 - Alternating utterances basic Theory of Mind concepts
 - Dialog flow (« speech/dialog acts »)
 - Conditioning on a provided personality
- How to build a sequential inputs for our model from a conditioned dialog?
 - Unlike RNN/LSTM, Transformers don't possess a natural notion of sequentiality and position
 - We need to add positional embeddings to incorporate sequentiality

Т	like	to	ski	Hello	!	How	are	you	today	?	Ι	am	good	thank	you	Word
																Posi

Word embeddings Positional embeddings

Encoding a Dialog and a Persona

- Now that we have a model with basic common-sense and co-reference capabilities, we need to teach it the specificities of dialog:
 - Alternating utterances basic Theory of Mind concepts
 - Dialog flow (« speech/dialog acts »)
 - Conditioning on a provided personality

• How to build a sequential inputs for our model from a conditioned dialog?

- Unlike RNN/LSTM, Transformers don't possess a natural notion of sequentiality and position
- We need to add positional embeddings to incorporate sequentiality

Word embeddings

Dialog state embeddings

Positional embeddings

• We add special embeddings related to utterances and personas

Т	like	to	ski	Hello	!	How	are	you	today	?	I	am	good	thank	you

Encoding a Dialog and a Persona

• We can play with these embeddings to manipulate the notion of a sequence

Repeating specific embeddings to control positioning information

Ι	like	to	ski	Ι	hate	mexican	food	Ι	like	to	eat	cheetos

We can also augment the dataset to bias towards positional invariance

I	hate	mexican		n	food	I	like	to	eat	cł	neetos	I	like	to	ski
Т	like	to	ski	I	hate	r	nexica	an	food	I	like	to	eat	che	etos

Permutation augmented dataset to bias towards positional invariance

Semantic Learning on Dialog Utterances

• Learning to distinguish a real answer from a distractor.

Can be combined with language modeling fine-tuning in a multi-task fashion

Decoding — 🖉 🖓 🖓 🕼 How are you?

- Beam Search
 - We create a message word by word.
 - Each time there could be several possibilities.
 - We keep a beam of possible answers and drop the lowest ones at each step.
 - We accumulate a pool of answers and select the one with the highest normalized probability
 - N-Grams filtering (competition rules forbid to repeat persona sentences)

That's it for today Thanks for listening!

Thomas WOLF thomas@huggingface.co